Abstract

Infrastructure systems are often complex. Many have both natural and built components. For such systems, including water resource networks, resilience is a common policy goal. In the formalised study of complex systems, the structure and function of networks can contribute directly to system resilience. One branch of complex systems studies, network science, describes how connectivity between individual components can explain some system-wide properties of growth and reliability. Water resource systems analysis has only begun to apply techniques from network theory and complexity science to assess adaptability and resilience. We present an analysis of connectivity in a network model of California's water infrastructure system using several network science techniques. Results indicate that nodes in California's water system are clustered but without scale-free properties. The network originates from a mixture of top-down (centralised) and bottom-up (dispersed interactions of parties) planning. This structure provides managers greater flexibility to use local and distant water sources. We use the analysis to illustrate how several disciplinary notions of resilience apply to civil infrastructure planning. We also explore how adaptability, not just complexity, influences resilience in planning. Creating systems that can respond to future changes must be an important policy goal in planning civil infrastructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.