Abstract

We present a nested splitting conjugate gradient iteration method for solving large sparse continuous Sylvester equation, in which both coefficient matrices are (non-Hermitian) positive semi-definite, and at least one of them is positive definite. This method is actually inner/outer iterations, which employs the Sylvester conjugate gradient method as inner iteration to approximate each outer iterate, while each outer iteration is induced by a convergent and Hermitian positive definite splitting of the coefficient matrices. Convergence conditions of this method are studied and numerical experiments show the efficiency of this method. In addition, we show that the quasi-Hermitian splitting can induce accurate, robust and effective preconditioned Krylov subspace methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.