Abstract

We investigate the use of one-way cascadic multigrid strategies (CMG) in the solution of incompressible viscous flow using the finite element method. First we describe the basic CMG approach for representative elliptic boundary value problems and summarize the theoretical error estimates from approximation theory, desired smoother properties, and arithmetic complexity of the method. The extension of these error and complexity estimates to adaptive grids is also given. Then we present the mathematical formulation and the finite element approximation scheme for the class of fluid-thermal problems of interest. In supporting numerical experiments, we examine performance of the algorithm on both serial and distributed parallel systems. We carry out comparison studies with a standard BCG solution strategy on the fine level grid and study diagonal treatments for the zero pressure block.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.