Abstract
Nerolidol (3,7,11-trimethyl-1,6,10-dodecatrien-3-ol), a sesquiterpene alcohol present in aromatic essential oils of numerous plants, has been reported to possess anticancer activity. The potential therapeutic effect of nerolidol on uterine fibroids (UF), the most common benign tumor of the uterus worldwide, is unknown. In this study, we examined the anti-UF potential of nerolidol in ELT3 cells, a rat leiomyoma cell line widely used as an in vitro model, to identify the potential therapeutic agents for UF. We observed that treatment with cis- or trans-nerolidol inhibited cell proliferation in a dose-dependent manner and induced cell cycle arrest in the G1 phase, which was accompanied by reduction in Akt phosphorylation and downregulation of cyclin D1, cyclin-dependent kinase 4 (CDK4), and CDK6 protein expression. The proliferation-inhibiting activity of nerolidol correlated with the generation of intracellular reactive oxygen species (ROS), which was suppressed by N-acetyl-l-cysteine, a ROS inhibitor. Nerolidol treatment also increased the percentage of cells for which tail moment could be calculated using an alkaline comet assay, and induced p-γH2AXser139 expression, which indicated induction of DNA damage. We also observed downregulation of ATM and its phosphorylation after nerolidol treatment; furthermore, treatment with KU-55933, an ATM kinase inhibitor, mimicked the inhibitory effects of nerolidol treatment on cell proliferation and Akt phosphorylation. In conclusion, nerolidol displayed anti-UF activity in a leiomyoma cell model via ROS-induced DNA damage and G1 phase cell cycle arrest by inhibiting the expression and activation of the ATM/Akt pathway. Our data suggests that nerolidol is a potential therapeutic agent for UF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.