Abstract

In this letter, we investigate the effects of process-induced strain on negative bias temperature instability (NBTI) by performing a comparative study of devices with and without process-induced strain for poly-Si/SiON gate stacks. Devices with SiGe source/drain with different processing sequences and devices with a combination of SiGe S/D and compressive contact etch stop layer (CESL) were studied and compared to reference devices. We decouple the effect of processing conditions in order to ensure a correct interpretation of the results. In contrast with the previous reports, which did not consider the impact of processing conditions, this letter demonstrates that, when initial threshold voltage differences are taken into account and comparisons are performed at the same oxide electric field, no significant degradation of intrinsic NBTI behavior is found for devices with a process-induced strain. In addition, we performed an Arrhenius study showing similar activation energies for devices with and without process-induced strain, suggesting similar degradation mechanism. The results indicate that process-induced strain does not create favorable conditions for additional interface state creation

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call