Abstract

We present theoretical results on steady state characteristics in bulk GaAs1−xNx alloys (x ≤ 0.2) using the single electron Monte-Carlo method. Two approaches have been used; the first assumes a GaAs band with a strong nitrogen scattering resonance and the second uses the band anti-crossing model, in which the localized N level interacts with the GaAs band strongly perturbing the conduction band. In the first model we observe two negative differential velocity peaks, the lower one associated with nitrogen scattering while the higher one with polar optical phonon emission accounting for the nonparabolicity effect. In the second model one negative differential velocity peak is observed associated with polar optical phonon emission. Good agreement with experimental low field mobility is obtained from the first model. We also comment on the results from both Models when the intervalley Г → L transfer is accounted for.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.