Abstract
Although the toxicity of petroleum-derived microplastics (MPs) has been widely investigated, the impact of biomicroplastics (BioMPs) remains controversial, and the necroecological trophic transfer of both is still poorly understood. Our study reveals that biomicroplastics may pose ecotoxicological risks comparable to or greater than those of petroleum-derived plastics, a finding that should raise concern. We aimed to evaluate the possible translocation of polystyrene (PS) and polylactic acid (PLA) MPs from mice to the necrophagous fly Synthesiomyia nudiseta and their potential effects on the larval stage. Mice were inoculated intraperitoneally with different doses of MPs [9 (I) and 90mg/kg (II)] and subjected to the decomposition process (for ten days), allowing colonization by larvae. Our results confirmed the translocation of MPs from mice to S. nudiseta larvae, resulting in a greater accumulation of PLA-MPs compared to PS-MPs. We observed that exposure to MPs significantly influenced biomass accumulation, with larvae from the PS-I and PLA-I groups showing increased biomass. In contrast, those from the PLA-II group exhibited lower biomass. AChE activity was modulated in a concentration-dependent manner, with an increase observed in larvae exposed to PLA-MPs, indicating a potential neurotoxic effect. In addition, there was an increased production of reactive oxygen species (ROS), especially in the groups exposed to higher concentrations of MPs, without a proportional response of antioxidant enzymes, suggesting a redox imbalance and oxidative stress. The elevated serotonin levels and reduced dopamine observed in larvae exposed to MPs indicate a possible redirection of energy resources and changes related to a metabolic adaptation to the stress imposed by MPs. Principal component analysis (PCA) showed that PC1 was strongly influenced by biomarkers such as trypsin, chymotrypsin, AChE, ROS, and dopamine activity, highlighting that PLA-MPs (at the highest concentration) induced more pronounced toxic effects than PS-MPs. This finding was corroborated by discriminant analysis, which revealed a clear separation between the experimental groups, and by multiple regression analysis, which confirmed a strong relationship between MP concentration and larval biomarker responses, indicating that the type and concentration of MPs explained approximately 65% of the variation in the biomarkers evaluated. In conclusion, our study demonstrates for the first time the necroecological trophic translocation of MPs between vertebrates and invertebrates, highlighting the potential risks of biomicroplastics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have