Abstract

We consider random Hermitian matrices with independent upper triangular entries. Wigner’s semicircle law says that under certain additional assumptions, the empirical spectral distribution converges to the semicircle distribution. We characterize convergence to semicircle in terms of the variances of the entries, under natural assumptions such as the Lindeberg condition. The result extends to certain matrices with entries having infinite second moments. As a corollary, another characterization of semicircle convergence is given in terms of convergence in distribution of the row sums to the standard normal distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.