Abstract

We compute the limiting eigenvalue statistics at the edge of the spectrum of large Hermitian random matrices perturbed by the addition of small rank deterministic matrices. To be more precise, we consider random Hermitian matrices with independent Gaussian entries $M_{ij}, i\leq j$ with various expectations. We prove that the largest eigenvalue of such random matrices exhibits, in the large $N$ limit, various limiting distributions depending on both the eigenvalues of the matrix $(\mathbb{E}M_{ij})_{i,j=1}^N$ and its rank.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.