Abstract
Rice is one of the most important food crops that provide essential nutrients, micronutrients and daily energy for humans. The freshness of rice determines the quality and nutrition supply property, but the freshness decreases along with the storage time. A simple, nondestructive and rapid detection technology is needed to estimate the time of storage rice as for a fast evaluation of the rice quality. To accomplish this objective, near-infrared spectroscopy (NIRS) is employed in combination with three machine learning methods, including least square support vector machine (LSSVM), random forest (RF) and principal component-neural network (PC-NN). With specific design on grid search of the relevant parameters, the LSSVM model optimally performed classification with the highest accuracy of 95.7% in the distinguishment of three labeled storage years, the RF model and PC-NN models have close accuracies in model training and optimization processes. In comparison to the PLS method, which is the typical chemometric method in NIRS data analysis, the three presented machine learning methods all perform excellent over the PLS model for model training and for model testing. Especially the RF and PC-NN model were optimized by hyperparameter training, to obtain 90% of testing accuracy and reduced the error differences to ∼5.0% between model training and testing. This study indicated the potential of NIRS in combination with machine learning methods as practical chemometric tools for discrimination of the rice storage freshness by distinguishing their storage years. The design of adaptive tuning on hyperparameters provide a valuable approach to improve the model prediction abilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.