Abstract
Machine learning is currently one of the research hotspots in the field of landslide prediction. To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models, Conghua District, which is the most prone to landslide disasters in Guangzhou, was selected for landslide susceptibility evaluation. The evaluation factors were selected by using correlation analysis and variance expansion factor method. Applying four machine learning methods namely Logistic Regression (LR), Random Forest (RF), Support Vector Machines (SVM), and Extreme Gradient Boosting (XGB), landslide models were constructed. Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic (ROC) curves. The results showed that LR, RF, SVM, and XGB models have good predictive performance for landslide susceptibility, with the area under curve (AUC) values of 0.752, 0.965, 0.996, and 0.998, respectively. XGB model had the highest predictive ability, followed by RF model, SVM model, and LR model. The frequency ratio (FR) accuracy of LR, RF, SVM, and XGB models was 0.775, 0.842, 0.759, and 0.822, respectively. RF and XGB models were superior to LR and SVM models, indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.©2024 China Geology Editorial Office.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.