Abstract
In the traditional water-jet guided laser (WJGL) processing system, convex lens is used to focus Gaussian laser beam, where the waist and divergence angle are constrained. The focal depth is small, and there are problems such as divergence angle and aberration, which results in the difficult coupling adjustment because the adjustment range of laser coupling to water-jet fiber is limited to the Rayleigh range. In this study, non-diffraction laser (NDL) is generated by an axicon, which has the characteristics of small central spot and large non-diffraction range (NDR). The axial random coupling is realized in the NDR, and the problem of axial coupling between the focused laser and the water-jet generated by nozzle micro-hole is solved. Besides, this paper presents a novel technique to generate NDL by the combination of concave axicon (CCA) and convex axicon (CVA), which solves the small cone angle of the single CVA and the non-modulation defect of the corresponding optical and mechanical structure, and extends the starting point of the NDR to improve the coupling utilization rate of the NDR and the flexibility of the system. The focusing and coupling transmission characteristics of convex lens and axicons mode in WJGL are compared and analyzed. The generated NDL in the NDR at the axial reference coordinate point position of 50 mm and 70 mm is successfully coupled into the water-jet fiber. After the coupling transmission of 20 mm, the coupling efficiency, the morphology of the transmitted spot and the peak power density were basically the same, and the coupling efficiency of the central spot was about 81 %. However, the output spot peak power density and coupling efficiency decrease sharply when the axial coupling deviation exceeds 5 mm adopting convex lens. In contrast, the NDL can achieve a random coupling with high axial coupling tolerance in NDR. The research provides a solution for efficient adjustment and transmission of laser coupling into water-jet in highly stable WJGL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.