Abstract
Reactive oxygen species (ROS) with strong oxidability have been considered as effective agents for antitumor therapy through oxidative damage to lipids, proteins, DNA and RNA. In this work, a multifunctional hollow cobaltosic sulfide (Co3S4)/photosensitizer indocyanine green (ICG) nanocomplex (Co3S4-ICG) has been synthesized by efficiently loading ICG into the hollow Co3S4 to realize synergistic antitumor therapy via chemodynamic therapy (CDT), photodynamic therapy (PDT) and photothermal therapy (PTT) under near-infrared (808 nm) laser irradiation. Co3S4 nanoparticles would be degraded in tumor acidic microenvironment into Co2+, which locally triggers a Fenton-like reaction to produce cytotoxic hydroxyl radicals (OH) for CDT. Co3S4-ICG could also produce singlet oxygen (1O2) through a multi-step photochemical process for PDT under 808 nm laser irradiation. The slow release of ICG in the tumor region was achieved due to hollow-structured Co3S4 working as nanocarriers, and which has been proved an effective approach for combined CDT/PDT. In addition, Co3S4-ICG showed high photothermal conversion efficiency (40.5%) for PTT, and excellent OH generation capability via photothermal-improved Fenton reaction, leading to the synergistically improved antitumor efficacy. In vitro and in vivo experimental results confirm that the combined PTT/PDT/photothermal-enhanced CDT therapy can effectively ablate tumors with a negligible systemic toxicity. This work provides a valuable strategy for designing and constructing of a multifunctional nanoplatform for synergistic antitumor therapy of solid tumors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have