Abstract

AbstractHere an excellent trimodality imaging‐guided synergistic photothermal therapy (PTT)/photodynamic therapy (PDT)/chemodynamic therapy (CDT) is proposed. To this end, a mixed‐metal Cu/Zn‐metal‐organic framework (MOF) is first assembled at room temperature on a nano‐scale. Interestingly, heating the MOF results in a Cu+/2+‐coexisting hollow porous structure. Subsequent heating treatment is used to integrate Mn2+ and MnO2 in the presence of manganese(II) acetylacetonate. The hollow composite achieves efficient loading of a photosensitizer, indocyanine green (ICG). Under laser irradiation, the aggregated ICG achieves photothermal imaging and PTT. Once released in the tumor site, ICG exhibits fluorescence imaging and PDT capacity. Cu+/Mn2+ ions perform Fenton‐like reaction with H2O2 to produce cytotoxic •OH for the enhanced CDT. Cu2+/MnO2 scavenge glutathione to improve the reactive oxygen species‐based therapy, while the formed Mn2+ ions enable “turn on” magnetic resonance imaging. Significantly, O2 is produced from the catalytic decomposition of endogenous H2O2 to improve ICG‐mediated PDT. Moreover, photothermal‐induced local hyperthermia accelerates •OH generation to enhance CDT. This synergistic drug‐free antitumor strategy realizes high treatment efficacy and low side effects on normal tissues. Thus, this mixed‐metal MOF is an efficient strategy to realize hollow structures for multi‐function integration to improve therapeutic capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.