Abstract
Near-field interactions in an array of electric inductive–capacitive (ELC) resonators are investigated analytically, numerically and experimentally. The measurement and simulation results show that inter-cell coupling plays an important role in determining the response of metamaterials. A quasistatic dipole–dipole interaction model, together with a Lagrangian formalism, quantitatively explains the interplay between the electric and magnetic couplings in the resonator array. Depending on the alignment of the resonators, the couplings can cause resonance shifting and/or splitting. The knowledge obtained from this study is crucial in designing metamaterials with ELC resonators.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have