Abstract

Cross-flow, or vertical-axis, turbines are a promising technology for capturing kinetic energy in wind or flowing water and their inherently unsteady fluid mechanics present unique opportunities for control optimization of individual rotors or arrays. To explore the potential for beneficial interactions between turbines in an array, as well as to characterize important cycle-to-cycle variations, coherent structures in the wake of a single two-bladed cross-flow turbine are examined using planar stereo particle image velocimetry in a water channel experiment. There are three main objectives in the present work. First, the mean wake structure of this high chord-to-radius ratio rotor is described, compared with previous studies, and a simple explanation for observed wake deflection is presented. Second, the unsteady flow is then analysed via the triple decomposition, with the periodic component extracted using a combination of traditional techniques and a novel implementation of the optimized dynamic mode decomposition. The latter method is shown to outperform conditional averaging and Fourier methods, as well as uncover frequencies suggesting a transition to bluff-body shedding in the far wake. Third, vorticity and finite-time Lyapunov exponents are then employed to further analyse the oscillatory wake component. Vortex streets on both sides of the wake are identified, and their formation mechanisms and effects on the mean flow are discussed. Strong axial (vertical) flow is observed in vortical structures shed on the retreating side of the rotor where the blades travel downstream. Time-resolved tracking of these vortices is performed, which demonstrates that vortex trajectories have significant rotation-to-rotation variation within one diameter downstream. This variability suggests it would be challenging to harness or avoid such structures at greater downstream distances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.