Abstract

Global sea level reconstruction (RecSL) for 1900–2015 was used to estimate the variations in oceanic kinetic energy (OKE) and compare OKE with changes in wind patterns and wind kinetic energy (WKE); the comparison was done for each latitude and for 5 western boundary currents (WBCs). Two contributors to variability in sea level were analyzed: gravitational, rotational and deformational effects (GRD) related to changes in water masses (barystatic sea level change), and changes in the sterodynamic sea level (SDSL), associated with changes in wind, steric sea level and ocean circulation. GRD changes were responsible for latitudinal multidecadal variations with time scale of ~ 60 to 80 years, while SDSL changes were responsible for interannual and decadal variability, and together with the Greenland ice melt, to sea level acceleration since the 1960s. Regional changes near WBCs show a coherent upward trend in OKE (+ 24% ± 3 increase per century), while trends in WKE over the same regions changed widely from -11% (decrease) over the Gulf Stream region to + 28% (increase) over the Brazil Current region. Low frequency oscillations of wind and oceanic kinetic energy are correlated in some WBCs (e.g., R = 0.5 in the Kuroshio region) but not in others (e.g., R = -0.05 in the Gulf Stream region). The study suggests that several forcing mechanisms contribute to the increased OKE, they include an increased wind-stress curl over subtropical gyres, local changes in wind patterns that impact some WBCs, and large uneven warming near WBCs that increased sea level gradients and thus intensified OKE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call