Abstract
Incorporating native perennial grasses adjacent to annual row crop systems managed on marginal lands can increase system resiliency by diversifying food and energy production. This study evaluated (1) soil organic C (SOC) and total N stocks (TN) under warm-season grass (WSG) monocultures and a low diversity mixture compared to an adjacent no-till continuous-corn system, and (2) WSG total above-ground biomass (AGB) in response to two levels of N fertilization from 2012 to 2017 in eastern Nebraska, USA. The WSG treatments consisted of (1) switchgrass (SWG), (2) big bluestem (BGB), and (3) low-diversity grass mixture (LDM; big bluestem, Indiangrass, and sideoat grama). Soils were sampled at fixed depth increments (0–120 cm) in the WSG plots and in the adjacent corn experiment in 2012 and 2017. Soil stocks (Mg ha−1) of SOC and TN were calculated on an equivalent soil mass (ESM) basis and compared within the three WSG treatments as well as between experiments (corn compared to the mean of all WSGs). Soil organic C and TN stocks within soil layers and cumulative stocks responded to the main effect of WSG (PWSG < 0.05) but were no different when comparing the WSGs to corn (Pexpt = NS). Both SOC/TN stocks and cumulative stocks were generally greater in the LDM compared to the BGB. Neither SOC nor TN changed over time under either the WSGs or corn. Warm-season grass AGB responded to a three-way interaction of year, N rate, and WSG (p = 0.0007). Decreases in AGB over time were significant across WSGs and N levels except for SWG at 56 kg N ha−1 and LDM at 112 kg N ha−1. Above-ground biomass was generally greater in the LDM after the first harvest year (2013). Results suggest that incorporating WSGs into marginal cropland can maintain SOC and TN stocks while providing a significant source of biomass to be used in energy production or in integrated livestock systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have