Abstract

The Knill-Laflamme conditions distinguish exact quantum error correction codes, and they have played a critical role in the discovery of state-of-the-art codes. However, the family of exact codes is a very restrictive one and does not necessarily contain the best-performing codes. Therefore, it is desirable to develop a generalized and quantitative performance metric. In this Letter, we derive the near-optimal channel fidelity, a concise and optimization-free metric for arbitrary codes and noise. The metric provides a narrow two-sided bound to the optimal code performance, and it can be evaluated with exactly the same input required by the Knill-Laflamme conditions. We demonstrate the numerical advantage of the near-optimal channel fidelity through multiple qubit code and oscillator code examples. Compared to conventional optimization-based approaches, the reduced computational cost enables us to simulate systems with previously inaccessible sizes, such as oscillators encoding hundreds of average excitations. Moreover, we analytically derive the near-optimal performance for the thermodynamic code and the Gottesman-Kitaev-Preskill code. In particular, the Gottesman-Kitaev-Preskill code's performance under excitation loss improves monotonically with its energy and converges to an asymptotic limit at infinite energy, which is distinct from other oscillator codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.