Abstract
Double perovskites LnBaCo2O5+δ (Ln = rare earth) are explored as cathode materials for intermediate-temperature solid oxide fuel cell. Barriers to the applicability of double perovskite cathodes include high thermal expansion coefficient (TEC) and poor chemical compatibility with common electrolytes. In this paper, we report the characteristics and applicability of a double perovskite NdBaCo2/3Fe2/3Cu2/3O5+δ (NBCFC) cathode on CeO2- and LaGaO3-based electrolytes. NBCFC is found to crystallize in a tetragonal structure. Partial substitution of Fe and Cu for cobalt in NBCFC demonstrates significantly decreased TEC and good chemical compatibility with both Gd0.1Ce0.9O1.95 (GDC) and La0.9Sr0.1Ga0.8Mg0.2O3–δ (LSGM) electrolytes, while maintaining its good electrochemical performance. The oxidation states of transition metal cations are Co3+/Co4+, Fe3+/Fe4+, and Cu+/Cu2+, respectively. The average TEC of NBCFC is 15.7 × 10−6 K−1 between 30 and 850 °C, and the polarization resistance values are 0.056 and 0.023 Ω cm2 at 800 °C with GDC and LSGM electrolytes, respectively. The absence of spin-state transition in copper contributes to the TEC reduction. Addition of appropriate amounts of GDC into NBCFC to form NBCFC–GDC composite cathodes further reduce the TEC and improve cathode performance. These results can be used to improve and develop novel double perovskite cathode materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have