Abstract

ObjectivesThe objectives of the current study were to define for the first time the roles of the natriuretic peptide (NP) receptors and neutral endopeptidase (NEP) in mediating and modulating the renal actions of Dendroaspis natriuretic peptide (DNP), a new therapeutic synthetic NP. BackgroundRecent reports have advanced the therapeutic potential of a newly described synthetic NP called DNP. Dendroaspis natriuretic peptide is a 38-amino acid peptide recently isolated from the venom of Dendroaspis augusticeps (the green mamba snake). MethodsSynthetic DNP was administered intra-renally at 5 ng/kg/min to 11 normal anesthetized dogs, 5 of which received the NP receptor antagonist HS-142-1 (3 mg/kg intravenous bolus) while the remaining 6 dogs received an infusion of the NEP inhibitor, candoxatrilat (8 and 80 μg/kg/min) (Pfizer, Sandwich United Kingdom). ResultsIntra-renal DNP resulted in marked natriuresis associated with increased urinary cyclic guanosine monophosphate excretion (UcGMPV), glomerular filtration rate (GFR), and renal blood flow (RBF) and decreased distal fractional sodium reabsorption (FNaR) compared with baseline. HS-142-1 attenuated the natriuretic response to DNP, resulting in decreased UcGMPV, GFR, and RBF and increased distal FNaR. In contrast, low and high doses of NEP inhibitor did not potentiate the renal actions of DNP. ConclusionsWe report that the NP receptor blockade attenuated the renal actions of synthetic DNP and that the NEP inhibitor did not alter the renal response to DNP. This latter finding is a unique property of synthetic DNP, as distinguished from other known NPs, supporting its potential as a therapeutic agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call