Abstract

Dendroaspis natriuretic peptide (DNP) is a recently discovered peptide with structural similarity to known natriuretic peptides. DNP has been shown to possess potent renal actions. Our objectives were to define the acute hemodynamic actions of DNP in normal anesthetized dogs and the acute effects of DNP on left ventricular (LV) function in conscious chronically instrumented dogs. In anesthetized dogs, DNP, but not placebo, decreased mean arterial pressure (141 +/- 6 to 109 +/- 7 mmHg, P < 0.05) and pulmonary capillary wedge pressure (5.8 +/- 0.3 to 3.4 +/- 0.2 mmHg, P < 0.05). Cardiac output decreased and systemic vascular resistance increased with DNP and placebo. DNP-like immunoreactivity and guanosine 3',5'-cyclic monophosphate concentration increased without changes in other natriuretic peptides. In conscious dogs, DNP decreased LV end-systolic pressure (120 +/- 7 to 102 +/- 6 mmHg, P < 0.05) and volume (32 +/- 6 to 28 +/- 6 ml, P < 0.05) and LV end-diastolic volume (38 +/- 5 to 31 +/- 4 ml, P < 0.05) but not arterial elastance. LV end-systolic elastance increased (6.1 +/- 0.7 to 7.4 +/- 0.6 mmHg/ml, P < 0.05), and Tau decreased (31 +/- 2 to 27 +/- 1 ms, P < 0.05). The effects on hemodynamics, LV function, and second messenger generation suggest synthetic DNP may have a role as a cardiac unloading and lusitropic peptide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call