Abstract
In this work, copper oxide nanoparticles (CuONPs) nanozymes paper-based analytical device was designed for the rapid detection of organophosphate pesticides in fruits and vegetables. The paper-based analytical device was modified with silica oxide nanoparticles to enhance the assay sensitivity. CuO nanozymes displayed peroxidase-like activity and catalyzed the oxidation of o-dianisidine in the presence of H2O2 from the hydrolysis of acetylthiocholine. This results in the formation of a brown−colored product. In the presence of organophosphate pesticides such as malathion, acetylcholinesterase activity was inhibited, resulting in reduced color intensity production, and which was measured with a smartphone. The proposed nanozymes paper-based analytical device exhibited a good linear detection range (0.1–5 mg L−1), a low detection limit of 0.08 mg L−1, and the analysis time was only about 10 min for malathion detection under optimal conditions. Moreover, the CuONPs had excellent catalytic activity and higher stability than peroxidase. Finally, this device can be applied to detect organophosphate pesticides in fruits and vegetables with rapidity, accuracy, portability, and ease of handling in the field.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have