Abstract

A signal on electrochemiluminescence (ECL) biosensor was designed for sensitive organophosphate pesticides (OPs) detection based on a novel composite of carboxylated graphitic carbon nitride-poly(ethylenimine) (C-g-C3N4-PEI) and acetylcholinesterase (AChE). The C-g-C3N4-PEI nanocomposite which was prepared through covalent bonding between the COOH of C-g-C3N4 and the NH2 of PEI exhibited significantly enhanced ECL efficiency and stability. K2S2O8 as the coreactant of C-g-C3N4-PEI could be consumed by thiocholine, produced by the hydrolysis of acetylthiocholine (ATCl) in the presence of AChE. Since OPs are one of AChE inhibiter, the consumption of coreactant K2S2O8 decreased with the increasing concentration of OPs, thus enhancing ECL signal. Under the optimum conditions, the proposed biosensor for OPs detection (using ethyl paraoxon as a model OPs) exhibited a wide linear ranging from 1.0 pM to 5.0μM with a low detection limit of 0.3 pM. The novel strategy has the advantages of fine practicality, good stability and reproducibility, which might provide a new promise for OPs detection in real-life samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.