Abstract

AbstractLow‐energy lead ion implantation and high‐temperature electron beam annealing were used to study the potential of producing Pb nanostructures on Si. Pb+ ions were implanted at high dose into p‐type (100) Si to the depth of 8.0 nm. The implanted samples were annealed under high vacuum conditions with an electron beam at 200–700 °C for 15 s. Rutherford Backscattering Spectrometry (RBS) shows rapid out‐diffusion of Pb atoms above 400 °C. However, some Pb atoms are still present in the near‐surface region after annealing the implanted samples at 700 °C. Lead nanostructures were found on samples annealed above 300 °C. Annealing the samples at 450 °C causes the formation of nanostructures as tall as 4.1 ± 0.1 nm. Many of these are arranged in ‘web‐like’ strings that extend over micrometer distances. Occasionally, much larger nano‐features (as wide as 500 nm in diameter, average height of 1.5 nm) appear in the centre of the strings. Annealing samples well above the melting point of lead results in randomly distributed small nanometer‐sized Si nano‐dots. Copyright © 2008 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.