Abstract
This paper is intended to continue the studies of magnesium effects on the structural phase composition, physical and mechanical properties of the nanostructured strain-hardened aluminum-magnesium alloys modified with C60 fullerene [1]. Previously obtained mechanically alloyed composite powders [1] were consolidated by direct hot extrusion method. Consolidation parameters were chosen based on previous studies of the structure and phase composition formation during mechanical alloying and heat treatment. It was found that an increase in magnesium concentration improves mechanical properties of extruded nanosructured composite materials, and additives modified by C60 fullerene stabilize the grain structure and slow down decomposition of α solid solution of magnesium in aluminum to 300 °C. Under similar thermobaric treatment Al82Mg18 (AMg18) not modified with C60 demonstrates a reduced α solid solution lattice constant and an increased average crystallite size. These processes are accompanied by sequential formation of γ, β′, and β phases, while γ and β′ are intermediate phases. The grain structure of extruded samples is typical for materials obtained in this way – grains are closely packed, elongated and oriented along the extrusion axis. The grain structure of extruded samples inherits the morphology of mechanically alloyed powders. Thus, mechanical alloying methods followed by intense plastic deformation (extrusion) improved mechanical properties significantly. Materials with ultimate tensile strength of 880 MPa; ultimate bending strength of 1100 MPa; microhardness up to 3300 MPa; and with the same density of 2.4–2.6 g/cm3 were obtained. This result demonstrates the prospects for using powder metallurgy techniques in the production of new nanostructured composite materials modified by C60 fullerene with improved physical and mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.