Abstract

Drug delivery systems are designed to control the release rate and location of therapeutic agents in the body to achieve enhanced drug efficacy and to mitigate adverse side effects. In particular, drug-releasing implants provide sustained and localized release. We report nanostructured polymer monoliths synthesized by polymerization-induced microphase separation (PIMS) as potential implantable delivery devices. As a model system, free poly(ethylene oxide) homopolymers were incorporated into the nanoscopic poly(ethylene oxide) domains contained within a cross-linked polystyrene matrix. The in vitro release of these poly(ethylene oxide) molecules from monoliths was investigated as a function of poly(ethylene oxide) loading and molar mass as well as the molar mass and weight fraction of poly(ethylene oxide) macro-chain transfer agent used in the PIMS process for forming the monoliths. We also developed nanostructured microneedles targeting efficient and long-term transdermal drug delivery by combining PIMS and microfabrication techniques. Finally, given the prominence of poly(lactide) in drug delivery devices, the degradation rate of microphase-separated poly(lactide) in PIMS monoliths was evaluated and compared with bulk poly(lactide).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.