Abstract

Chronic wound management using biomaterial-based dressings has significantly impacted the standard and efficiency of wound healing. However, various available wound healing aids are ineffective in treating deep open injuries and chronic wounds such as diabetic wounds. Herein, we developed a 3D bilayered multifunctional sponge, which addresses the structural and functional issues faced by biomaterial dressings in treating deep and chronic wounds. The 3D bilayered sponge consists of a hydrogel base functionalized with wound healing peptide (Tylotoin)-carrying nanoparticles and topped with a nanofiber layer functionalized with an antimicrobial peptide (LLKKK18). The 3D bilayered sponge, with its highly porous, elastic, and enhanced fluid absorption ability, makes it a suitable wound treatment aid. The developed multifunctional 3D sponge shows antibacterial action and promotes a microenvironment similar to the extracellular matrix (ECM) in regulating dermal cell survival and migration. Study in a full-thickness skin defect diabetic mouse model has shown that the developed 3D bilayered sponge accelerated wound closure and promoted functional skin regeneration through reduced inflammation, faster granulation tissue formation, re-epithelialization, neovascularization, and skin appendage restoration, which make the developed 3D bilayered multifunctional sponge an efficient and advanced chronic wound management aid with potential for future clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.