Abstract

Nanotechnology advancements have resulted in the creation of tailored medicine delivery systems. However, properly targeting a molecule to a specific region with a drug delivery system necessitates using a specialized drug delivery system. The development of nanosponge has become a crucial step in solving some challenges such as drug toxicity, low bioavailability, and predictable drug release. Many drug delivery methods, such as nanoparticles, nanoemulsions, nanosuspensions, and nanosponges, have been developed via nanomedicine technology. Nanosponges are little sponges like the size of a virus that may be loaded with a vast range of medications. Nanosponges serve an essential function in regulated medication delivery. These mini sponges may flow throughout the human body until they reach the same target region. They adhere to the surface and begin to release the medicine in a regulated and predictable way. The outside surface is often porous, which allows for regulated medication release. The important feature of these sponges is their aqueous solubility, which makes them appropriate for medications with low solubility. Their molecular architecture is often composed of several polymer chains that can generate unique microdomains suited for co-encapsulating two medicines with different chemical structures. When used to release insoluble medications, nanosponges also shield the active components from physicochemical deterioration. Nanosponges can be made into a number of dosage forms, including parenteral, aerosol, tablets, topical, and capsules, thanks to their small size and spherical structure. This study focuses on the techniques of synthesis and applications of nanosponges in the realm of medication delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call