Abstract

Nanosecond electroporation of cell organelles is being studied since more than a decade, but it is still not entirely understood. Unique prototype hardware equipment and challenging measuring methods may also be a contributing reason for this situation. In the scope of this paper, we improve the performance of the high-voltage nanosecond pulse generator by introducing silicon carbide (SiC) mosfets. We developed a new high-voltage diode opening switch (DOS)-nanosecond pulse generator for laboratory use for in vitro experiments in electroporation cuvettes. Analysis and comparison of the most commonly used switching technologies in pulse generators were made. The device is designed by two parallel two-stage Marx-bank circuits with SiC mosfets that generates up to 200 A in the resonant network. A driving circuit for stable simultaneous switching of SiC mosfets was developed. The developed generator can deliver from 500V to more than 6kV, approximately 8ns pulses to a 50Ω load. Even though the amplitude of the output pulse is not as high as expected, the multiplication factor [Formula: see text] is still approximately 9, which is an improvement compared to the previously published linear DOS generator. Measurement and evaluation process is described in detail. Additionally, we emphasize on the size of an error that occurs during measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call