Abstract

Nanoscale tin dioxide (SnO2) and zinc oxide (ZnO) layers are considered as promising candidates for preparation of sensing elements for metal oxide semiconductor gas sensors. Tin dioxide films deposited by direct current magnetron sputtering are investigated. The influence of deposition temperature and annealing on the structure and electrical properties of the tin dioxide films are considered. The development of design and technological solution of active layer with high gas sensitivity, reproducibility and stability is offered. Studies of effects of the pulse electrodeposition regimes on structural and substructural parameters and on morphology of zinc oxide arrays made it possible to identify modes that are optimal for formation of hierarchical nanostructures with large specific surface area suitable for gas sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.