Abstract

Heusler alloys are a series of well-established intermetallic compounds with abundant structure and elemental substitutions, which are considered as potentially valuable catalysts for integrating multiple reactions owing to the features of ordered atomic arrangement and optimized electronic structure. Herein, a nanoporous copper titanium tin (np-Cu2TiSn) Heusler alloy is successfully prepared by the (electro)chemical dealloying transformation method, which exhibits high nitrate (NO3–) reduction performance with an NH3 Faradaic efficiency of 77.14 %, an NH3 yield rate of 11.90 mg h−1 mg−1cat, and a stability for 100 h under neutral condition. Significantly, we also convert NO3− to high-purity ammonium phosphomolybdate with NH4+ collection efficiency of 83.8 %, which suggests a practical approach to convert wastewater nitrate into value-added ammonia products. Experiments and theoretical calculations reveal that the electronic structure of Cu sites is modulated by the ligand effect of surrounding Ti and Sn atoms, which can simultaneously enhance the activation of NO3−, facilitate the desorption of NH3, and reduce the energy barriers, thereby boosting the electrochemical nitrate reduction reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.