Abstract

This manuscript deals with the increased and selective nitrate reduction under visible light over a WN co-doped titania photocatalyst. A series of WN co-doped titania nanomaterials were synthesized with varying tungsten content and were characterized by TEM, XRD, UV-vis and nitrogen adsorption–desorption studies. Tungsten doped materials are found to be noodle shaped and mesoporous with a stable anatase phase after 500 °C calcination. Peak shifting in the XRD pattern indicates the tungsten doping in the crystal lattice. Visible light absorption increases with the increasing tungsten amount. Among the studied hole scavengers, formic acid was found to be the best for nitrate reduction with more than 94% nitrogen gas selectivity. The amount of hole scavenger also controls the reaction efficiency and product selectivity. Both nitrate reduction and nitrogen gas selectivity increases with WN co-doping in comparison to only N doped titania. High nitrate reduction with formic acid is attributed to the formation of CO2˙− species having high reduction potential. The material with 2% tungsten shows the highest surface area and the best photocatalytic activity under visible light. Presence of anion like chloride increases the nitrate photoreduction. Overall high nitrate reduction can be attributed to the synergistic effect of tungsten and nitrogen co-doping, optimum surface hydroxyl group, mesoporosity and appreciable visible light absorption of the materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.