Abstract

I show that all phases reported experimentally in binary nanoparticle superlattices can be described as networks of disclinations in an ideal lattice of regular tetrahedra. A set of simple rules is provided to identify the different disclination types from the Voronoi construction, and it is shown that those disclinations completely screen the positive curvature of the ideal tetrahedral lattice. In this way, this study provides a generalization of the well-known Frank-Kasper phases to binary systems consisting of two types of particles, and with a more general type of disclinations, i.e., quasi-Frank-Kasper phases. The study comprises all strategies in nanoparticle self-assembly, whether driven by DNA or hydrocarbon ligands, and establishes the universal tendency of superlattices to develop icosahedral order, which is facilitated by the asymmetry of the particles. Besides its interest in predicting nanoparticle self-assembly, I discuss the implications for models of the glass transition, micelles of diblock polymers, and dendritic molecules, among many others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.