Abstract
Using the transversal vibration resonance of a suspended carbon nanotube as a charge detector for its embedded quantum dot, we investigate the case of strong Kondo correlations between a quantum dot and its leads. We demonstrate that even when large Kondo conductance is carried at odd electron number, the charging behavior remains similar between odd and even quantum dot occupations. While the Kondo conductance is caused by higher order processes, a sequential tunneling only model can describe the time-averaged charge. The gate potentials of the maximum current and fastest charge increase display a characteristic relative shift, which is suppressed at increased temperature. These observations agree very well with models for Kondo-correlated quantum dots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.