Abstract

This study investigates the mechanical properties of A508-3 steel irradiated with Fe ions to 0.1, 0.4, 2.0, and 5.0 dpa at 20, 100, and 300 °C using a nanoindentation experiment and crystal plasticity finite element model (CPFEM). The Nix–Gao model is applied to obtain the hardness H0 based on the measured data. The hardness of the steel increases with increasing radiation damage at all temperatures. The simulations of the nanoindentation process by CPFEM loaded in the [001], [110], [111], [112], and [123] directions concurred with the corresponding experimental data in all the studied cases, validating the CPFEM results. The dislocation loop expedites the increase of mobile dislocation and retards the decrease of immobile dislocation, resulting in larger von Mises stresses of the irradiated samples with a flatter shape, especially near the irradiated region. Furthermore, the area of the von Mises stress shrinks with an increase in temperature. This study could help understand the macroscopic deformation behavior of irradiated steel based on experimental and microstructural analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.