Abstract
Microstructural-related deformation behavior leads to anisotropic machining characteristics of polycrystalline materials. In the present work, we develop a crystal plasticity finite element model of ultra-precision diamond cutting of polycrystalline copper, aiming to evaluate the influence of grain boundaries on the correlation between microscopic deformation behavior of the material and macroscopic machining results. The crystal plasticity dealing with the anisotropy of polycrystalline copper is implemented in a user subroutine (UMAT), and an efficient element deletion technique based on the Johnson-Cook damage model is adopted to describe material removal and chip formation. The effectiveness of as-established crystal plasticity finite element model is verified by experiments of nanoindentation, nanoscratching and in-situ diamond microcutting. Subsequent crystal plasticity finite element simulation of diamond cutting across a high angle grain boundary demonstrates significant anisotropic machining characteristics in terms of machined surface quality, chip profile and cutting force, due to heterogeneous plastic deformation behavior in the grain level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.