Abstract

Nanodiamond/polyamide (ND/PA) nanocomposite was examined with infrared (IR) microscopy and time-domain nuclear magnetic resonance (TD-NMR) to elucidate in detail the interphase between amino functionalized ND (ND-NH2) and PA 66. An IR image of the ND/PA nanocomposite suggested the uniform nanoscale distribution of the ND-NH2 particles thanks to the spherical shape and accessible external surface of ND terminated with reactive amino groups. On the other hand, a substantial level of change was observed in T2 decay curves when the ND-NH2 particles were incorporated in the PA 66. The fine features of the thermally induced changes in the decay curves were readily analyzed with the two-trace two-dimensional (2T2D) correlation method. The variation in the asynchronous correlation intensity indicated that the changes observed in the mechanical properties of the ND/NH2 may be attributed to the development of crosslinking between tie chains in the amorphous region via the interaction between the ND-NH2 and PA 66. Accordingly, such firm links have a substantial effect in preventing the displacement of the amorphous domain, which eventually increases the Young’s modulus but reduces the ductility of the PA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call