Abstract

Human papillomavirus (HPV) infection has been reported to be associated with N6-methyladenosine (m6A) modification in cancers. However, the underlying mechanism by which m6A methylation participates in HPV-related cervical squamous cell carcinoma (CSCC) remains largely unclear. In this study, we observed that m6A regulators methyltransferase like protein (METTL14) and insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) were upregulated in HPV-positive CSCC tissues and cell lines, and their high expression predicted poor prognosis for HPV-infected CSCC patients. Cellular functional experiments verified that HPV16 oncogenes E6/E7 upregulated the expression of METTL14 and IGF2BP3 to promote cell proliferation and epithelial mesenchymal transition of CSCC cells. Next, we found that E6/E7 stabilized fascin actin-bundling protein 1 (FSCN1) mRNA and elevated FSCN1 expression in CSCC cells through upregulating METTL14/IGF2BP3-mediated m6A modification, and FSCN1 expression was also validated to be positively associated with worse outcomes of HPV-positive CSCC patients. Finally, HPV16-positive CSCC cell lines SiHa and CaSki were transfected with knockdown vector for E6/E7 or METTL14/IGF2BP3 and overexpressing vector for FSCN1, and functional verification experiments were performed through using MTT assay, flow cytometry, wound healing assay and tumour formation assay. Results indicated that knockdown of E6/E7 or METTL14/IGF2BP3 suppressed cell proliferation, migration and tumorigenesis, and accelerated cell apoptosis of HPV-positive CSCC cells. Their tumour-suppressive effects were abolished through overexpressing FSCN1. Overall, HPV E6/E7 advanced CSCC development through upregulating METTL14/IGF2BP3-mediated FSCN1 m6A modification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.