Abstract
The study explores the synthesis and utilization of biochar (BC) and multi-layer MXene to MXene/biochar (MB) composites for wastewater treatment. Simultaneously, it also investigates their energy generation potential through biomass and soil property assessments. The integrated column and batch treatments have shown significant results, elevating total dissolved solids from 63.7 to 125.5 mg L−1 with column treatment, while reducing them to 6.37 % and 1.35 % with BC and MB treatment, respectively. BC with high carbon content, demonstrated increased hydrophobicity, which was amplified by the integration of MXene, thereby enhancing its potential for advanced wastewater treatment. Treated wastewater exhibited elevated nutrient concentrations (Ca, Cu, Fe, K, Na, and NH4+), promoting the growth of Pennisetum purpureum. WW_B shows promising energy potential, with a higher heating value of 25.03 MJ kg−1 and a lower heating value of 23.57 MJ kg−1. They demonstrated high volatile matter exceeding 70.9 wt %, and a fixed carbon from 10.02 to 27.53 wt %, signifying their potential for efficient conversion and bio-oil yield during pyrolysis. The ultimate analysis emphasized significant carbon, with oxygen content ranging from 43.42 to 47.78 wt %., influencing combustion characteristics. MT_B exhibited its suitability for energy production through thermochemical conversion, underlined by its high flammability and low volatile ignition values. In the absence of BC, the Ea ranged from 24.77 to 77.88 kJ mol−1 in wastewater and from 21.67 to 69.6 kJ mol−1 in MB treated wastewater. Meanwhile, when soil contained BC and was irrigated with wastewater, the Ea varied from 24.66 to 80.91 kJ mol−1. In the case of MB treated wastewater, it ranged from 25.01 to 75.79 kJ mol−1. The research thereby affirms the potential of MB composites to advance water and energy sustainability setting us for broader nexus-based applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.