Abstract
Microplastics (MPs) inevitably experienced various aging processes in nature may exhibit varied and complex interfacial interactions with adjacent species. Therefore, clarifying the possible interfacial interactions between naturally aged MPs and organic pollutants is of great significance to assess the actual behaviors of MPs in the environment. Here several plastic packaging materials after use were employed as the raw materials and representatives of naturally aged MPs, the alteration of surface characteristics, especially the degree of aging and the adsorption properties of MPs for anionic and cationic dyes were investigated. The types and the degree of aging of MPs were identified, and the variation of oxygen-containing functional groups (carbonyl, hydroxyl, and ester groups), the hydrophilicity and surface charge character were characterized. The fitting results of kinetics and isotherm models indicated that the adsorption was mainly multi-layer on heterogeneous surfaces, with hydrogen bonding, electrostatic attraction, polar interaction, and hydrophobic partitioning possibly involving. The hydrogen bond interaction was further confirmed by FTIR spectra. The increased temperature promoted the adsorption of cationic dyes on MPs, and the increased salinity of the solution enhanced the uptake of most of the tested dyes by MPs. This research deepened the understanding on the aging degree of MPs and their interfacial interactions with hydrophilic pollutants, and provided vital information for MPs as pollutant carriers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.