Abstract

The stability of drinking water disinfectant residuals is known to be influenced by multiple variables. To evaluate the effects of various influencing variables on disinfectant stability, a multivariate analysis of chloramine decay and associated disinfection by-products (DBPs) formation was investigated in a series of bench-scale experiments. Of nine water quality variables previously identified, monochloramine dose, pH, and bromide concentration were selected as key water quality variables based on previous investigations and modelling. Co-effects of these key variables on monochloramine decay and formation of 33 halogenated and nitrogen-containing DBPs were investigated using response surface experimental design.Rechloramination conditions, including monochloramine dose, pH and bromide concentration, were optimised via a 3-factorial multivariate analysis of monochloramine stability in post-treatment drinking water. Effects of influencing variables on disinfectant decay and DBP formation were assessed and graphically presented as response surfaces with minimal experiments using Doehlert matrix experimental design compared to other multivariate experimental designs. Concentrations of trihalomethanes (THMs), haloacetic acids (HAAs), and N-nitrosamines were found to increase with water age, whereas opposite phenomenon was observed in the net production of haloacetonitriles (HANs). Increasing pH was found to stabilise monochloramine but it could cause DBP speciation to shift. Furthermore, increasing bromide concentration elevated Br-DBP formation. In bromide-containing water, pH = 7.8–8.0 should be considered as higher pH increases Br-THMs formations and lower pH increases formations of Br-HAAs and Br-HANs. However, water age or pH has insignificant impacts on DBP formation after significant monochloramine decay or at low initial monochloramine dose.These findings indicate that effective combined control measures to maintain monochloramine stability should include the application of high monochloramine dose (>1.5 mg-Cl2.L−1) under conditions of moderate to high pH (pH = 7.8–8.0) and minimal bromide concentration. This study provides relevant insights to water utilities aiming to design effective disinfectant residual management strategies for controlling monochloramine decay and DBP formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call