Abstract
Environment disinfection effectively curbs transmission of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). However, elevated concentration of free available chlorine (FAC) in disinfectants can be discharged into surface water, generating toxic disinfection byproducts (DBPs). The impact of solar photolysis of FAC on natural organic matter (NOM) to form DBPs has not been well studied. In this work, solar photolysis of FAC was found to result in higher formation of DBPs, DBPs formation potential (DBPsFP), total organic chlorine (TOCl) and lower specific ultraviolet absorbance at 254 nm (SUVA254), compared to dark chlorination. In solar photolysis of FAC, formation of total DBPs was promoted by pH=8, but hindered by the addition of HCO3−, radical scavenger or deoxygenation, while addition of NO3−and NH4+both enhanced the formation of nitrogenous DBPs. Differences in the formation of DBPs in solar photolysis of FAC under various conditions were influenced by reactive species. The formation of trichloromethane (TCM) and haloacetic acids (HAAs) in solar photolysis of FAC positively correlated with the steady-state concentrations of ClO• and O3. The steady-state concentrations of •NO and •NH2 positively correlated with the formation of halonitromethanes (HNMs). HAAs and haloacetonitriles (HANs) mainly contributed to calculated cytotoxicity of DBPs. This study demonstrates that solar photolysis of FAC may significantly impact the formation of DBPs in surface water due to extensive use of disinfectants containing FAC during SARS-CoV-2 pandemic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.