Abstract

BackgroundOrganophosphate esters (OPEs) exposure could affect offspring health. However, the underlying mechanisms are not well documented. ObjectivesBased on a birth cohort study, we aimed to investigate the associations among gestational OPEs exposure, placental DNA methylation levels of peroxisome proliferator-activated receptor (PPAR) signaling pathway-related genes, and fetal growth. MethodsWe measured the concentrations of eight OPE metabolites in maternal urine samples and neonatal anthropometric measurements in 733 mother-child pairs. In 327 placental samples, we assessed the DNA methylation levels of 14 genes which were involved in the PPARs signaling pathway and expressed in placenta. Multiple linear regression models were used to examine the associations of OPEs exposure with placental DNA methylation, and of OPEs and placental DNA methylation with neonatal anthropometric measurements. Causal mediation analyses were conducted to examine the potential mediating role of placental DNA methylation in the pathway between OPEs exposure and fetal growth. ResultsWe observed a general pattern of OPEs exposure being associated with hypermethylation of candidate genes, with statistically significant associations identified for several OPEs with RXRA, ACAA1, ACADL, ACADM, PLTP, and NR1H3 methylation. Further, gestational exposure to BCIPP, DPP, BBOEP, ∑NCl-OPEs, and ∑OPEs tended to be associated with lower anthropometric measurements, with more significant associations observed on arm circumference, and abdominal and back skinfold thickness. Notably, RXRA, ACAA1, ACOX1, CPT2, ACADM, and NR1H3 methylation tended to be associated with lower neonatal anthropometric measurements, especially for abdominal and back skinfold thickness. Moreover, mediation analyses showed that 19.42 % of the total effect of DPP on the back skinfold thickness was mediated by changes in RXRA methylation, and there was a significant indirect effect of RXRA methylation. ConclusionsGestational OPEs exposure could disrupt the placental DNA methylation levels of PPAR signaling pathway-related genes, which might contribute to the effect of OPEs on fetal growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.