Abstract
AbstractLet and be a convergent multivariable power series in . In this paper, we present two conditions on the positive coefficients that imply that for nonnegative coefficients . If , then both of our results reduce to a lemma of Kaluza's. For , we present examples to show that our two conditions are independent of one another. It turns out that functions of the type satisfy one of our conditions, whenever is a product of probability measures on . Our results have applications to the theory of Nevanlinna–Pick kernels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.