Abstract

This paper is a continuation of Miyake [7] by the first named author. We shall study the unique solvability of an integro-differential equation in the category of formal or convergent power series with Gevrey estimate for the coefficients, and our results give some analogue in partial differential equations to Ramis [10, 11] in ordinary differential equations.In the study of analytic ordinary differential equations, the notion of irregularity was first introduced by Malgrange [3] as a difference of indices of a differential operator in the categories of formal power series and convergent power series. After that, Ramis extended his theory to the category of formal or convergent power series with Gevrey estimate for the coefficients. In these studies, Ramis revealed a significant meaning of a Newton polygon associated with a differential operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.