Abstract

Multivapor-responsive biocompatible soft actuators have immense potential for applications in soft robotics and medical technology. We report fast, fully reversible, and multivapor-responsive controlled actuation of a pure cassava-starch-based film. Notably, this starch-based actuator sustains its actuated state for over 60 min with a continuous supply of water vapor. The durability of the film and repeatability of the actuation performance have been established upon subjecting the film to more than 1400 actuation cycles in the presence of water vapor. The starch-based actuators exhibit intriguing antagonistic actuation characteristics when exposed to different solvent vapors. In particular, they bend upward in response to water vapor and downward when exposed to ethanol vapor. This fascinating behavior opens up new possibilities for controlling the magnitude and direction of actuation by manipulating the ratio of water to ethanol in the binary solution. Additionally, the control of the bending axis of the starch-based actuator, when exposed to water vapor, is achieved by imprinting-orientated patterns on the surface of the starch film. The effect of microstructure, postsynthesis annealing, and pH of the starch solution on the actuation performance of the starch film is studied in detail. Our starch-based actuator can lift 10 times its own weight upon exposure to ethanol vapor. It can generate force ∼4.2 mN upon exposure to water vapor. To illustrate the vast potential of our cassava-starch-based actuators, we have showcased various proof-of-concept applications, ranging from biomimicry to crawling robots, locomotion near perspiring human skin, bidirectional electric switches, ventilation in the presence of toxic vapors, and smart lifting systems. These applications significantly broaden the practical uses of these starch-based actuators in the field of soft robotics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.