Abstract
This paper presents a multi-scale stochastic dynamic analysis method for offshore structures. The uncertainties in the structural material parameters, such as mass density and Young's modulus, are considered. They are assumed to be lognormal distributions and represented by using the Karhunen–Loeve (KL) and Polynomial Chaos (PC) expansions. Since the variance of the output responses is unknown, the output vibration response is represented by using PC expansion. The multi-scale stochastic analysis is conducted with PC expansions of different orders representing responses at different DOFs defined as three categories, namely, important, less important and the least important ones. Iterated Order Reduced (IOR) model reduction technique is employed to remove the PC coefficients of slave DOFs. Two numerical examples are taken to verify the accuracy and efficiency of the proposed method for the multi-scale stochastic dynamic response analysis of offshore risers. The response statistics such as mean value and variance can be obtained from the proposed method. The results are compared with those from Monte Carlo Simulation (MCS) and Stochastic Finite Element Method (SFEM). Results demonstrate that the computational demand for uncertainty evaluation is greatly reduced, and the accuracy of the results is maintained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.