Abstract

The tectonically deformed coal (TDC) reservoirs with abundant gas resources and low permeability are expected to become one of the target coal seams for carbon dioxide geological storage-enhanced coalbed methane recovery (CO2-ECBM). The pore–fracture structure plays a crucial role in determining the effectiveness of CO2 storage. Fractal analysis provides a valuable approach to quantitatively describe the complex and heterogeneous pore–fracture structures across various scales in coal matrixes. Accordingly, the TDC samples in the Huainan–Huaibei coalfield and primary-undeformed coal (PUC) samples in the Qinshui Basin were selected for pore–fracture structure parameter tests using the mercury intrusion porosimetry (MIP) and low–temperature nitrogen adsorption (LNA) methods. Their multiscale pore–fracture parameters were analyzed using different fractal methods based on pore diameter. According to the fractal results, a multiscale classification standard for pore–fracture structures was devised in this study that is suitable for the controlling gas migration process. A parameter of 8 nm is set as the separating pore diameter for gas migration and storage. It was observed that the connectivity of migration pores (>8 nm) in TDC samples was stronger compared to PUC samples, reflected in larger pore volumes and smaller fractal dimensions. However, its complex development of seepage pores (150–300 nm) may hinder the flow of CO2 injection. As for the storage pores (<8 nm), the fractal dimension of the 2–8 nm pores in TDC was found to be similar to that of PUC but with larger pore volumes. The fractal dimension of the filling pores (<2 nm) in TDC samples was relatively lower, which facilitates efficient gas volume filling. Therefore, the pore–fracture structure of the TDC samples is found to be more advantages for CO2 injection and storage compared to the PUC. This suggests that TDC reservoirs holds promising geological potential for CO2-ECBM implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.