Abstract

The development of a dislocation-based continuum theory of plasticity remains one of the central challenges of applied physics and materials science. Developing a continuum theory of dislocations requires the solution of two long-standing problems: (i) to find a faithful representation of dislocation kinematics with a reasonable number of variables and (ii) to derive averaged descriptions of the dislocation dynamics (i.e. material laws) in terms of these variables. In the current paper, we solve the first problem, i.e. we develop tensorial conservation laws for distributions of oriented lines. This is achieved through a multipole expansion of the dislocation density in terms of so-called alignment tensors containing information on the directional distribution of dislocation density and dislocation curvature. A hierarchy of evolution equations of these tensors is derived from a higher dimensional dislocation density theory. Low-order closure approximations of this hierarchy lead to continuum dislocation dynamics models of plasticity with only few internal variables. Perspectives for more refined theories and current challenges in dislocation density modelling are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call