Abstract
The development of a dislocation-based continuum theory of plasticity remains one of the central challenges of applied physics and materials science. Developing a continuum theory of dislocations requires the solution of two long-standing problems: (i) to find a faithful representation of dislocation kinematics with a reasonable number of variables and (ii) to derive averaged descriptions of the dislocation dynamics (i.e. material laws) in terms of these variables. In the current paper, we solve the first problem, i.e. we develop tensorial conservation laws for distributions of oriented lines. This is achieved through a multipole expansion of the dislocation density in terms of so-called alignment tensors containing information on the directional distribution of dislocation density and dislocation curvature. A hierarchy of evolution equations of these tensors is derived from a higher dimensional dislocation density theory. Low-order closure approximations of this hierarchy lead to continuum dislocation dynamics models of plasticity with only few internal variables. Perspectives for more refined theories and current challenges in dislocation density modelling are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.